DEPARTMENT OF VETERANS AFFAIRS

VA SIERRA PACIFIC NETWORK VA PACIFIC ISLANDS HEALTH CARE SYSTEM

VA HVAC & ELEC DESIGN

CONTRACT NO: VA261-14-D-0210

ACC BUILDING

459 PATTERSON RD

HONOLULU, HI 96819

FINAL CONSTRUCTION DOCUMENTS SUBMITTAL

10-23-15

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

			DIVISION 00 - SPECIAL SECTIONS
00	01	15	List of Drawing Sheets
			DIVISION 01 - GENERAL REQUIREMENTS
_	00		General Requirements
01	32	16.15	Project Schedules (Small Projects - Design/Bid/Build
01	33	23	Shop Drawings, Product Data, and Samples
01	35	26	Safety Requirements
01	42	19	Reference Standards
01	57	19	Temporary Environmental Controls
01	58	16	Temporary Interior Signage
01	74	19	Construction Waste Management
			DIVISION 05 METALS
05	12	00	Structural Steel Framing
			DIVISION 07 - THERMAL AND MOISTURE PROTECTION
07	60	00	Flashing and Sheet Metal
07	84	00	Firestopping
07	92	00	Sealants
			DIVISION 23 - HEATING, VENTILATING, AND AIR
			CONDITIONING (HVAC)
	05		Common Work Results for HVAC
23	05	12	General Motor Requirements for HVAC and Steam
			Generation Equipment
23	05	41	Noise and Vibration Control for HVAC Piping and
			Equipment
	05		Testing, Adjusting, and Balancing for HVAC
	07		HVAC and Boiler Plant Insulation
	08		Commissioning of HVAC Systems
	23		Refrigerant Piping
	31		HVAC Ducts and Casings
	34		HVAC Fans
	37		Air Outlets and Inlets
	40		HVAC Air Cleaning Devices
	74		Packaged, Outdoor, Central-Station Air-Handling Units
23	81	00	Decentralized Unitary HVAC Equipment

	DIVISION 26 - ELECTRICAL
26 05 11	Requirements for Electrical Installations
26 05 19	Low-Voltage Electrical Power Conductors and Cables
26 05 26	Grounding and Bonding for Electrical Systems
26 05 33	Raceway and Boxes for Electrical Systems
26 22 00	Low-Voltage Transformers
26 27 26	Wiring Devices
26 29 11	Motor Controllers
26 29 21	Enclosed Switches and Circuit Breakers

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.	<u>Title</u>
	GENERAL
T-001	TITLE SHEET
T-002	ABBREVIATIONS, SYMBOLS & NOTES
	ARCHITECTURAL
A-101	SCOPE OF WORK PLAN - LEVEL 1 & 2
A-102	SCOPE OF WORK PLAN - LEVEL 3 & ROOF
A-103	ENLARGED ELECTRICAL ROOM PLANS
A-104	ENLARGED LABORATORY RELECTED DEILING PLAN
A-105	ENLARGE ROOF PLANS
A-106	PENETRATION DETAILS
A-107	ROOF DETAILS
	STRUCTURAL
- 404	INVAC CUIDDODE EDAME DIAM
S-101	HVAC SUPPORT FRAME PLAN
S-101	HVAC SUPPORT FRAME PLAN
S-101	MECHANICAL
S-101 M-001	
	MECHANICAL
M-001	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND
M-001 M-101	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM
M-001 M-101 M-102	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM
M-001 M-101 M-102 M-103	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN
M-001 M-101 M-102 M-103 M-104	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN
M-001 M-101 M-102 M-103 M-104	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN
M-001 M-101 M-102 M-103 M-104	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL
M-001 M-101 M-102 M-103 M-104 DETAILS	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL ELECTRICAL
M-001 M-101 M-102 M-103 M-104 DETAILS	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL ELECTRICAL ELECTRICAL LEGEND & NOTES, ONE-LINE DIAGRAM
M-001 M-101 M-102 M-103 M-104 DETAILS	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL ELECTRICAL ELECTRICAL LEGEND & NOTES, ONE-LINE DIAGRAM ROOF ELECTRICAL PLAN
M-001 M-101 M-102 M-103 M-104 DETAILS	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL ELECTRICAL ELECTRICAL LEGEND & NOTES, ONE-LINE DIAGRAM ROOF ELECTRICAL PLAN ENLARGED ELECTRICAL PLANS - LEVEL 1-3 ELECTRICAL
M-001 M-101 M-102 M-103 M-104 DETAILS E-100 E-101 E-102	MECHANICAL MECHANICAL EQUIPMENT SCHEDULE, NOTES, AND LEGEND ENLARGED ELECTRICAL ROOM ENLARGED ELECTRICAL ROOM LEVEL 2 - A/C & V PLAN ROOF LEVEL - A/C & V PLANM-501 MECHANICAL ELECTRICAL ELECTRICAL LEGEND & NOTES, ONE-LINE DIAGRAM ROOF ELECTRICAL PLAN ENLARGED ELECTRICAL PLANS - LEVEL 1-3 ELECTRICAL ROOMS

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1 \$	SAFETY REQUIREMENTS	. 1
1.2 (GENERAL INTENTION	1
1.3 \$	STATEMENT OF BID ITEM(S)	1
1.4 \$	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.5	CONSTRUCTION SECURITY REQUIREMENTS	2
1.6	OPERATIONS AND STORAGE AREAS	4
1.7 2	ALTERATIONS	8
1.8 I	DISPOSAL AND RETENTION	10
	PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS	10
1.10	RESTORATION	11
1.11	PHYSICAL DATA	12
1.12	AS-BUILT DRAWINGS	12
1.13	USE OF ROADWAYS	12
1.14	TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	13
1.15	TEMPORARY USE OF EXISTING ELEVATORS	14
1.16	TEMPORARY TOILETS	15
1.17	AVAILABILITY AND USE OF UTILITY SERVICES	15
1.18	INSTRUCTIONS	16
1.19	GOVERNMENT-FURNISHED PROPERTY	17
1.20	RELOCATED EQUIPMENT ITEMS	19
1.21	SAFETY SIGN	19
1 22	EINNI DICITAL IMACES	20

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for air conditioning five electrical rooms and first floor switchgear room and replacement of rooftop a/c unit as required by drawings and specifications.
- B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer.
- C. Offices of Ferraro Choi & Associates, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

- ITEM I, Electrical Work: Work includes all labor, material, equipment and supervision to perform the required electrical construction work on this project including power connections for new mechanical equipment.
- ITEM II, Mechanical Work: Work includes all labor, material, equipment and supervision to perform the required Mechanical construction work on this project including
- removal of existing rooftop a/c unit serving the laboratory, installation of new rooftop a/c unit to serve the laboratory, installation of two new ACCU rooftop units to service the electrical rooms.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

D. Key Control:

1. VA will issue keys to the General Contractor to access the specific rooms or spaces designated on the drawings. General Contractor may

not make any duplicates of the keys and shall return the keys to the Contracting Officer after Project Completion.

E. Document Control:

- Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
- 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.

F. Motor Vehicle Restrictions

- 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
- 2. A limited number of (2 to 5) permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

D. Working space and space available for storing materials shall be as determined by the COR.

- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.

G. Phasing:

The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:

To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of

site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor, as follows:

Phase I: Install new rooftop A/C equipment. Place new laboratory rooftop unit beside existing unit.

Phase II: Replace rooftop laboratory A/C unit minimizing downtime of A/C system which may necessitate laboratory closure. Core for electrical room lines. Install electrical room piping and electrical room units.

H. The ACC Building will be vacated by Government in accordance with above phasing beginning immediately after date of receipt of Notice to Proceed and turned over to Contractor.

Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting, etc to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.

- J. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
 - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 - Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of

site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.

- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS for additional requirements.
 - 2. Contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.

- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- N. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by all three, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of the building.

- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of the COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.

- 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Reserved items which are to remain property of the Government are identified by attached tags as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs

or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged.

 Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched,

- repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

1.12 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the Resident within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.13 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.14 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by COR in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
 - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
 - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
 - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.

- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.15 TEMPORARY USE OF EXISTING ELEVATORS

- A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:
 - 1. Contractor makes all arrangements with the COR for use of elevators. The Resident Engineer will ascertain that elevators are in proper condition. Contractor may use elevators for daily use between the hours of 7am to 8am and 5pm to 8pm and for special nonrecurring time intervals when permission is granted. Personnel for operating elevators will not be provided by the Department of Veterans Affairs.
 - 2. Contractor covers and provides maximum protection of following elevator components:
 - a. Entrance jambs, heads soffits and threshold plates.
 - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
 - c. Finish flooring.
 - 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes at the contractors expense.
 - 4. If brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining at the contractors expense.

- 5. All parts of main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts at the contractors expense, if recommended by elevator inspector after elevator is released by Contractor.
- 6. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

1.16 TEMPORARY TOILETS

A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.17 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any

temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:

- 1. Obtain heat by connecting to Medical Center heating distribution system.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
 - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of use of water from Medical Center's system.

1.18 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly

components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.19 GOVERNMENT-FURNISHED PROPERTY

A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings.

- B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center.
- C. Storage space for equipment will be provided by the Government and the Contractor shall be prepared to unload and store such equipment therein upon its receipt at the Medical Center.
 - D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment.
 - 1. Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages.
 - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government.
 - E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government.
 - F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings.
 - G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer.

1.20 RELOCATED EQUIPMENT ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.
- C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. Contractor shall employ services of an installation engineer, who is an authorized representative of the manufacturer of this equipment to supervise assembly and installation of existing equipment, required to be relocated.
- F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

1.21 SAFETY SIGN

- A. Provide a Safety Sign where directed by COR. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted.
- C. Maintain sign and remove it when directed by COR.

- D. Standard Detail Drawing Number SD10000-02(Found on VA TIL) of safety sign showing required legend and other characteristics of sign is attached hereto and is made a part of this specification.
- E. Post the number of accident free days on a daily basis.

1.22 FINAL DIGITAL IMAGES

- A. A minimum of four (4) images of each elevation shall be taken with a minimum 6 MP camera, with different settings. All images are provided to the RE on a CD.
- B. Photographs shall be taken upon completion, including landscaping. They shall be taken on a clear sunny day to obtain sufficient detail to show depth and to provide clear, sharp pictures. Pictures shall be 400 mm x 500 mm (16 by 20 inches), printed on regular weight paper, matte finish archival grade photographic paper and produced by a RA4 process from the digital image with a minimum 300 PPI. Identifying data shall be carried on label affixed to back of photograph without damage to photograph and shall be similar to that provided for final construction photographs.
- C. All images shall become property of the Government.

- - - E N D - - -

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COTR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COTR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.

B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COTR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project

duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - 1. Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised

computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- F. The Complete Project Schedule shall contain approximately 30 work activities/events.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
 - 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COTR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
 - 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.

- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COTR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COTR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

A. Monthly, the contractor shall submit an application and certificate for payment using the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.

B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COTR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COTR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - 2. Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.
 - 6. Logic and duration revisions required by this section of the specifications.
 - 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the resident engineer. After each rerun update, the resulting

electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - 1. Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.

- 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
- 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COTR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - 1. Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs

- of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COTR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of

each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.

D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

- 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- 1-2. For the purposes of this contract, samples, test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS.
- 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless:
 - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or;
 - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or;
 - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government.
- 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion.
- 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by the Contracting Officer.
- 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals.
- 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR

52.243-4) and CHANGES - SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS.

- 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items.
- 1-9. Submittals must be submitted by Contractor only and shipped prepaid.

 Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals.
 - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via first class mail and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval.
 - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only.
 - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project.
 - 3. Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor.
 - D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter.
 - E. Approved samples will be kept on file by the COR at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in

their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract.

- F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check.
 - 1. For each drawing required, submit one legible photographic paper or vellum reproducible.
 - 2. Reproducible shall be full size.
 - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number.
 - 4. A space 120 mm by 125 mm (4-3/4) by 5 inches shall be reserved on each drawing to accommodate approval or disapproval stamp.
 - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment.
 - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor.
 - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover.
- 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to

Ferraro Choi & Associates (Architect-Engineer)

1240 Ala Moana Blvd, Suite 510 (A/E P.O. Address)

Honolulu, HI 96814

(City, State and Zip Code)

1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1 APPLICABLE PUBLICATIONS					
1.2 DEFINITIONS					
1.3 REGULATORY REQUIREMENTS					
1.4 ACCIDENT PREVENTION PLAN (APP)4					
1.5 ACTIVITY HAZARD ANALYSES (AHAs)9					
1.6 PRECONSTRUCTION CONFERENCE					
1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP)					
1.8 TRAINING					
1.9 INSPECTIONS					
1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS					
1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE)					
1.12 INFECTION CONTROL					
1.13 TUBERCULOSIS SCREENING					
1.14 FIRE SAFETY					
1.15 ELECTRICAL					
1.16 FALL PROTECTION					
3 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) 27					
1.19 CONFINED SPACE ENTRY					
282829					

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE): Planning A10.34-2012......Protection of the Public on or Adjacent to Construction Sites A10.38-2013......Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations C. American Society for Testing and Materials (ASTM): E84-2013.....Surface Burning Characteristics of Building Materials D. The Facilities Guidelines Institute (FGI): FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities E. National Fire Protection Association (NFPA): 10-2013.....Standard for Portable Fire Extinguishers 30-2012......Flammable and Combustible Liquids Code 51B-2014......Standard for Fire Prevention During Welding, Cutting and Other Hot Work 70-2014.....National Electrical Code

70E-2012Standard for Electrical Safety in the Workplace

70B-2013......Recommended Practice for Electrical Equipment

Maintenance

99-2012	.Health	Care 1	Facilities	Code	2	
241-2013	.Standar	d for	Safeguardi	.ng (Constructi	on

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification

Manual

Alteration, and Demolition Operations

G. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1904Reporting and Recording Injuries & Illnesses

29 CFR 1910Safety and Health Regulations for General Industry

29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

H. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- C. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

- E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in:
 - Death, regardless of the time between the injury and death, or the length of the illness;
 - Days away from work (any time lost after day of injury/illness onset);
 - 3. Restricted work;
 - 4. Transfer to another job;
 - 5. Medical treatment beyond first aid;
 - 6. Loss of consciousness; or
 - 7. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative

1.4 ACCIDENT PREVENTION PLAN (APP):

A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract

and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.

- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - 2) Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
 - b. BACKGROUND INFORMATION. List the following:
 - Contractor;
 - 2) Contract number;
 - 3) Project name;

- 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.
 - 4) Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
 - 6) Lines of authority;
 - 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- **e. SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/certifications that may be required
 (e.g., contracted CSP or CSHT)
- h. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the Resident Engineer or Contracting Officer Representative:
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigations, reports, and logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance

programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:

- 1) Emergency response;
- 2) Contingency for severe weather;
- 3) Fire Prevention;
- 4) Medical Support;
- 5) Posting of emergency telephone numbers;
- 6) Prevention of alcohol and drug abuse;
- 7) Site sanitation (housekeeping, drinking water, toilets);
- 8) Night operations and lighting;
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- C. Submit the APP to the Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE Al0.34) and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their

competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.

- 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, and Ladder.
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Electrical, Cranes, &

Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, and Ladder.

- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, and ladder, shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.

- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc. Documentation shall be provided to the COR that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or

location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative or Government Designated Authority determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.

B. Mandatory PPE includes:

1. Hard Hats - unless written authorization is given by the Resident Engineer Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.

- 2. Safety glasses unless written authorization is given by the Contracting Officer Representative appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.

 Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the COR. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class III, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:

- 1) Notify the Contracting Officer Representative
- 2) Execute work by methods to minimize raising dust from construction operations.
- 3) Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.

b. Upon Completion:

- 1) Clean work area upon completion of task
- 2) Notify the Contracting Officer Representative

2. Class II requirements:

- a. During Construction Work:
 - 1) Notify the Contracting Officer Representative
 - 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - 6) Remove or isolate HVAC system in areas where work is being performed.

b. Upon Completion:

- 1) Wipe work surfaces with cleaner/disinfectant.
- 2) Contain construction waste before transport in tightly covered containers.
- 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
- 4) Upon completion, restore HVAC system where work was performed
- 5) Notify the Contracting Officer Representative

3. Class III requirements:

a. During Construction Work:

- 1) Obtain permit from the Contracting Officer Representative2)

 Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
- 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
- 5) Contain construction waste before transport in tightly covered containers.
- 6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the Contracting Officer Representative

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative2)

 Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure within work site utilizing HEPA equipped air filtration units.
 - 5) Seal holes, pipes, conduits, and punctures.
 - 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site.
 - 7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.

- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the Contracting Officer Representative
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - 2. Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the COR and Medical Center) - Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
 - f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes

- Barrier Doors: Self Closing One-hour // solid core wood in steel frame, painted
- 3. Dust proof one-hour drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine

impact of construction activities on indoor air quality with safe thresholds established.

- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the COR and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
 - 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.

7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.

- 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NEPA 70.
- D. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
- E. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative.

- F. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- G. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- H. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- I. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative.
- J. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Engineer. Obtain permits from Resident Engineer at least 24 hours in advance.
- K. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- L. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- M. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- N. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work.
 - 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical

testing instruments or equipment appropriate for the environment in which they will be used.

- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. All 120-volt, single-phase 15- and 20-ampere receptacle outlets on construction sites shall have approved ground-fault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed.

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.

4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date of November 10, 2014.
- C. A detailed lift permit shall be submitted 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing. The lift will not be allowed without approval of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.18 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.19 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(q)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Resident Engineer.

1.20 WELDING AND CUTTING

A. As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with the COR. Obtain permits from the COR at least 24 hours in advance.

1.21 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft $(0.9\ m)$ above the upper landing surface.
 - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. LADDERS SHALL BE INSPECTED FOR VISIBLE DEFECTS ON A DAILY BASIS AND AFTER ANY OCCURRENCE THAT COULD AFFECT THEIR SAFE USE. BROKEN OR DAMAGED LADDERS SHALL BE IMMEDIATELY TAGGED "DO NOT USE," OR WITH SIMILAR WORDING, AND WITHDRAWN FROM SERVICE UNTIL RESTORED TO A CONDITION MEETING THEIR ORIGINAL DESIGN.1.22 FLOOR & WALL OPENINGS
 - A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or

fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.

- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc. http://www.agma.org MAHA Association of Home Appliance Manufacturers http://www.aham.org AIA American Institute of Architects http://www.aia.org American Institute of Steel Construction AISC http://www.aisc.org AISI American Iron and Steel Institute http://www.steel.org AITC American Institute of Timber Construction http://www.aitc-glulam.org AMCA Air Movement and Control Association, Inc. http://www.amca.org ANLA American Nursery & Landscape Association http://www.anla.org ANST American National Standards Institute, Inc. http://www.ansi.org APA The Engineered Wood Association http://www.apawood.org ARI Air-Conditioning and Refrigeration Institute http://www.ari.org ASAE American Society of Agricultural Engineers http://www.asae.org American Society of Civil Engineers ASCE http://www.asce.org American Society of Heating, Refrigerating, and ASHRAE Air-Conditioning Engineers http://www.ashrae.org American Society of Mechanical Engineers ASME http://www.asme.org

ASSE American Society of Sanitary Engineering

http://www.asse-plumbing.org

ASTM American Society for Testing and Materials

http://www.astm.org

AWI Architectural Woodwork Institute

http://www.awinet.org

AWS American Welding Society

http://www.aws.org

AWWA American Water Works Association

http://www.awwa.org

BHMA Builders Hardware Manufacturers Association

http://www.buildershardware.com

BIA Brick Institute of America

http://www.bia.org

CAGI Compressed Air and Gas Institute

http://www.cagi.org

CGA Compressed Gas Association, Inc.

http://www.cganet.com

CI The Chlorine Institute, Inc.

http://www.chlorineinstitute.org

CISCA Ceilings and Interior Systems Construction Association

http://www.cisca.org

CISPI Cast Iron Soil Pipe Institute

http://www.cispi.org

CLFMI Chain Link Fence Manufacturers Institute

http://www.chainlinkinfo.org

CPMB Concrete Plant Manufacturers Bureau

http://www.cpmb.org

CRA California Redwood Association

http://www.calredwood.org

CRSI Concrete Reinforcing Steel Institute

http://www.crsi.org

CTI Cooling Technology Institute

http://www.cti.org

DHI Door and Hardware Institute

http://www.dhi.org

EGSA Electrical Generating Systems Association

http://www.egsa.org

EEI Edison Electric Institute

http://www.eei.org

EPA Environmental Protection Agency

http://www.epa.gov

ETL Testing Laboratories, Inc.

http://www.et1.com

FAA Federal Aviation Administration

http://www.faa.gov

FCC Federal Communications Commission

http://www.fcc.gov

FPS The Forest Products Society

http://www.forestprod.org

GANA Glass Association of North America

http://www.cssinfo.com/info/gana.html/

FM Factory Mutual Insurance

http://www.fmglobal.com

GA Gypsum Association

http://www.gypsum.org

GSA General Services Administration

http://www.gsa.gov

HI Hydraulic Institute

http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association

http://www.hpva.org

ICBO International Conference of Building Officials

http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.

http://www.icea.net

\ICAC Institute of Clean Air Companies

http://www.icac.com

IEEE Institute of Electrical and Electronics Engineers

http://www.ieee.org\

IMSA International Municipal Signal Association

http://www.imsasafety.org

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association

http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings

Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers

http://www.naamm.org

NAPHCC Plumbing-Heating-Cooling Contractors Association

http://www.phccweb.org.org

NBS National Bureau of Standards

See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors

http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association

http://www.nema.org

NFPA National Fire Protection Association

http://www.nfpa.org

NHLA National Hardwood Lumber Association

http://www.natlhardwood.org

NIH National Institute of Health

http://www.nih.gov

NIST National Institute of Standards and Technology

http://www.nist.gov

NLMA Northeastern Lumber Manufacturers Association, Inc.

http://www.nelma.org

NPA National Particleboard Association

18928 Premiere Court Gaithersburg, MD 20879

(301) 670-0604

NSF National Sanitation Foundation

http://www.nsf.org

NWWDA Window and Door Manufacturers Association

http://www.nwwda.org

OSHA Occupational Safety and Health Administration

Department of Labor http://www.osha.gov

PCA Portland Cement Association

http://www.portcement.org

PCI Precast Prestressed Concrete Institute

http://www.pci.org

PPI The Plastic Pipe Institute

http://www.plasticpipe.org

PEI Porcelain Enamel Institute, Inc.

http://www.porcelainenamel.com

PTI Post-Tensioning Institute

http://www.post-tensioning.org

RFCI The Resilient Floor Covering Institute

http://www.rfci.com

RIS Redwood Inspection Service

See - CRA

RMA Rubber Manufacturers Association, Inc.

http://www.rma.org

SCMA Southern Cypress Manufacturers Association

http://www.cypressinfo.org

SDI Steel Door Institute

http://www.steeldoor.org

IGMA Insulating Glass Manufacturers Alliance

http://www.igmaonline.org

SJI Steel Joist Institute

http://www.steeljoist.org

SMACNA Sheet Metal and Air-Conditioning Contractors

National Association, Inc.

http://www.smacna.org

SSPC The Society for Protective Coatings

http://www.sspc.org

STI Steel Tank Institute

http://www.steeltank.com

SWI Steel Window Institute

http://www.steelwindows.com

TCA Tile Council of America, Inc.

http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association

http://www.tema.org

TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UL Underwriters' Laboratories Incorporated

http://www.ul.com

ULC Underwriters' Laboratories of Canada

http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau

6980 SW Varns Road, P.O. Box 23145

Portland, OR 97223

(503) 639-0651

WRCLA Western Red Cedar Lumber Association

P.O. Box 120786

New Brighton, MN 55112

(612) 633-4334

WWPA Western Wood Products Association

http://www.wwpa.org

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA): 33 CFR 328......Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.

- f. Methods for protection of features to be preserved within authorized work areas including trees, air and water quality, fish and wildlife, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.
 - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - 2. Protection of Landscape: Protect trees, land forms, and other landscape features by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.

- b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
- c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Hawaii Administrative Rules, Title 11, Chapters 59 Ambient Air Quality Standards, Chapter 60.1 Air Pollution Controls, and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the

project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.

- 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
- 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 7:00a.m. and 8:00a.m. and after 6:00p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at $15\ \text{m}\ (50\ \text{feet})\ (\text{dBA})$:

EARTHMOV	ING	MATERIALS HANDLIN	ſĠ
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	////

GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the A weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Contracting Officer noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Inerts (eg, concrete, masonry and asphalt).
 - 2. Clean dimensional wood and palette wood.
 - Engineered wood products (plywood, particle board and I-joists, etc).
 - 4. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 5. Cardboard, paper and packaging.
 - 6. Plastics (eg, ABS, PVC).
 - 7. Gypsum board.
 - 8. Insulation.
 - 9. Paint.

1.2 RELATED WORK

A. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.

- 2. Packaging used for construction products.
- 3. Poor planning and/or layout.
- 4. Construction error.
- 5. Over ordering.
- 6. Weather damage.
- 7. Contamination.
- 8. Mishandling.
- 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling.

 Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Contracting Officer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.

- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - 1) Description of materials to be site-separated and self-hauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):
 LEED Green Building Rating System for Existing Buildings

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.

C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.

1.3 QUALITY ASSURANCE:

- A. Fabricator and erector shall maintain a program of quality assurance in conformance with Section 8, Code of Standard Practice for Steel Buildings and Bridges. Work shall be fabricated in an AISC certified Category Std fabrication plant.
- B. Before authorizing the commencement of steel erection, the controlling contractor shall ensure that the steel erector is provided with the written notification required by 29 CFR 1926.752. Provide copy of this notification to the COR.

1.4 TOLERANCES:

Fabrication tolerances for structural steel shall be held within limits established by ASTM A6, by AISC 303, Sections 6 and 7, Code of Standard Practice for Buildings and Bridges.

1.5 DESIGN:

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the COR of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the COR. Submit structural calculations prepared and sealed by a qualified engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS:

- A. AISC 360: Specification for Structural Steel Buildings
- B. AISC 303: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete
- C. Certificates:
 - 1. Structural steel.
 - 2. Steel for all connections.
 - 3. Welding materials.
 - 4. Shop coat primer paint.
- D. Test Reports:
 - 1. Welders' qualifying tests.
- E. Design Calculations and Drawings:
 - 1. Connection calculations, if required.
- F. Record Surveys.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Institute of Steel Construction (AISC):
 - 1. AISC 360-10 Specification for Structural Steel Buildings
 - 3. AISC 303-10 Code of Standard Practice for Steel Buildings and Bridges
- C. American National Standards Institute (ANSI):

B18.22.1-65(R2008).....Plain Washers

D. American Society for Testing and Materials (ASTM):

A6/A6M-11.....Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates,

Shapes, and Sheet Piling

A36/A36M-08......Standard Specification for Carbon Structural Steel

A123/A123M-09......Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
A307-10.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength

Strength

A500/A500M-10a......Standard Specification for Cold Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

E. American Welding Society (AWS):

D1.1/D1.1M-10.....Structural Welding Code-Steel

F. Research Council on Structural Connections (RCSC) of The Engineering Foundation:

Specification for Structural Joints Using ASTM A325 or A490 Bolts

G. Military Specifications (Mil. Spec.):

MIL-P-21035......Paint, High Zinc Dust Content, Galvanizing, Repair

H. Occupational Safety and Health Administration (OSHA):
 29 CFR Part 1926-2001...Safety Standards for Steel Erection

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- D. E. Bolts, Nuts and Washers:
 - 1. 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- F. Zinc Coating: ASTM A123.
- G. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD):

A. Welding: Welding in accordance with AWS D1.1. Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.

В.

3.2 FABRICATION:

Fabrication in accordance with Chapter M, AISC 360. .

3.3 SHOP PAINTING:

- A. General: Shop paint steel with primer in accordance with AISC 303, Section 6.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
- E. Zinc Coated (Hot Dip Galvanized) per ASTM A123 (after fabrication): Touch-up after erection: Clean and wire brush any abraded and other

spots worn through zinc coating, including threaded portions of bolts and welds and touch-up with galvanizing repair paint.

3.4 ERECTION:

A. General: Erection in accordance with AISC 303, Section 7B. Temporary Supports: Temporary support of structural steel frames during erection in accordance with AISC 303, Section 7

3.5 FIELD PAINTING:

- A. After erection, touch-up steel surfaces specified to be shop painted.

 After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING.

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for roof penetration flashing, are specified in this section.

1.2 RELATED WORK

- A. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- B. Integral flashing components of manufactured roof specialties and accessories or equipment: Division 23 HVAC sections.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. American National Standards Institute/Single-Ply Roofing Institute
 (ANSI/SPRI):
 - ANSI/SPRI ES-1-03......Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems
- C. ASTM International (ASTM):

A240/A240M-14Standar	ecification for Chromium and
Chromiu	ckel Stainless Steel Plate, Sheet
and Str	or Pressure Vessels and for General
Applica	S.

- B32-08.....Solder Metal
- D412-06(R2013)......Vulcanized Rubber and Thermoplastic Elastomers-Tension
- D1187-97(R2011)......Asphalt Base Emulsions for Use as Protective

 Coatings for Metal
- D3656-07......Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns
- D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.
- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06...... Metal Finishes Manual
- F. Federal Specification (Fed. Spec):

- A-A-1925A......Shield, Expansion; (Nail Anchors)
- G. International Code Commission (ICC): International Building Code, Current Edition

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
- C. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 4. Nonreinforced, elastomeric sheeting
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of -30°C (-20 °F).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Bituminous Paint: ASTM D1187, Type I.
- C. Fasteners:
 - 1. Use stainless steel for stainless steel.
 - 2. Nails:

- c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
- d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
- 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
- D. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- E. Bonding Adhesive: Synthetic polymer based bonding adhesive for adhering non-reinforced elastomeric sheeting to existing EPDM roof membrane.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
 - 1. Stainless steel: 0.4 mm (0.015 inch) minimum.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. In general, stainless steel joints, except expansion and contraction joints, shall be locked and soldered.
 - 2. Jointing of stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 - 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 4. Flat and lap joints shall be made in direction of flow.
 - 5. Soldering:
 - a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of stainless steel.
 - d. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.

C. COMPLETELY REMOVE ACID AND FLUX AFTER SOLDERING IS COMPLETED.2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 2. Stainless Steel: Finish No. 2B or 2D.

2.7 BASE FLASHING

- A. Use metal base flashing at vertical surfaces where shown.
 - 1. Use stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use 0.5 mm (0.018 inch) stainless steel.
 - 3. Use stainless steel at pipe flashings.

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. Stainless steel, unless specified otherwise.
- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one piece counter-flashing.
 - 4. Manufactured assemblies may be used.
 - 6. Where counterflashing is installed at existing work use surface applied type, formed to provide a space for the application of sealant at the top edge.
- C. Two-Piece Counterflashing:
 - 2. Counterflashing upper edge designed to snap lock into receiver.
- D. Surface Mounted Counterflashing; one or two piece:
 - 1. Use at existing or new surfaces where flashing cannot be inserted in vertical surface.
 - 2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against

vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counter-flashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.

3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.

E. Pipe Counterflashing:

- 1. Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
- 2. Fabricate 100 mm (4 inch) over lap at end.
- 3. Fabricate draw band of same metal as counter flashing. Use 0.33 mm (0.013 inch) thick stainless steel.
- 4. Use stainless steel bolt on draw band tightening assembly.
- 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
- 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
- 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
- 5. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.

- 6. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 7. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- 8. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 9. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 10. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.

3.3 BASE FLASHING

- A. Install where roof membrane type base flashing is not used and where
 - 1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.
- B. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

3.4 COUNTERFLASHING (CAP FLASHING OR HOODS)

A. General:

- 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
- 2. Install counterflashing to lap base flashings not less than 100 mm (4 inch).
- 3. Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.

- 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.
- 5. Use surface applied counterflashing on existing surfaces and new work where not possible to integrate into item.
- B. One Piece Counterflashing:
 - 1. Where flashing is surface mounted on flat surfaces.
 - a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 - 1) Locate fasteners in masonry mortar joints.
 - 2) Use screws to sheet metal or wood.
 - b. Fill joint at top with sealant.
 - 2. Where flashing or hood is mounted on pipe.
 - a. Secure with draw band tight against pipe.
 - b. Set hood and secure to pipe with a one by 25 mm \times 3 mm (1 \times 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 - c. Completely fill joint at top with sealant.
- E. When counter flashing is a component of other flashing install as shown.

SECTION 07 84 00 FIRESTOPPING

PART 1 GENERAL

1.1 DESCRIPTION:

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK:

- A. Sealants and application: Section 07 92 00, JOINT SEALANTS.
- B. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installer qualifications.
- C. Inspector qualifications.
- D. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- E. List of FM, UL, or WH classification number of systems installed.
- F. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- G. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE:

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.

C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):
 - E84-14.....Surface Burning Characteristics of Building
 Materials
 - E699-09......Standard Practice for Evaluation of Agencies

 Involved in Testing, Quality Assurance, and

 Evaluating of Building Components
 - E814-13a.....Fire Tests of Through-Penetration Fire Stops
- C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13......Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):

Annual Issue Building Materials Directory

Annual Issue Fire Resistance Directory

723-10(2008)......Standard for Test for Surface Burning
Characteristics of Building Materials

1479-04(R2014).....Fire Tests of Through-Penetration Firestops

E. Intertek Testing Services - Warnock Hersey (ITS-WH):

Annual Issue Certification Listings

F. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS:

A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the

- passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area.
- C. Products requiring heat activation to seal an opening by its intumescence are not permitted by VA Fire and Safety for use in firestop systems.
- D. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
- E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used
- F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.

- H. Materials to be nontoxic and non-carcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- I. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS:

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.
- D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping.

3.2 PREPARATION

- A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.

3.3 INSTALLATION

- A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP AND ACCEPTANCE OF WORK

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Resident Engineer.
- C. Clean up spills of liquid type materials.

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- B. Mechanical Work: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- D. Lab Tests: Submit samples of materials that will be in contact or affect joint sealants to joint sealant manufacturers for tests as follows:
 - Adhesion Testing: Before installing elastomeric sealants, test their adhesion to protect joint substrates according to the method in ASTM C794 to determine if primer or other specific joint preparation techniques are required.
- E. Preconstruction Field-Adhesion Testing: Before installing elastomeric sealants, field test their adhesion to joint substrates according to

Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1.1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.

- 1. Locate test joints where indicated in construction documents or, if not indicated, as directed by COR.
- 2. Conduct field tests for each application indicated below:
 - a. Each type of elastomeric sealant and joint substrate indicated.
 - b. Each type of non-elastomeric sealant and joint substrate indicated.
- 3. Notify COR seven (7) days in advance of dates and times when test joints will be erected.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer.
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:

- Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):
 - C509-06......Elastomeric Cellular Preformed Gasket and Sealing Material
 - C612-14......Mineral Fiber Block and Board Thermal Insulation
 - C717-14a.....Standard Terminology of Building Seals and Sealants
 - C794-10......Test Method for Adhesion-in-Peel of Elastomeric

 Joint Sealants

- C920-14a.....Elastomeric Joint Sealants.
 C1021-08(R2014).....Laboratories Engaged in Testing of Building
 Sealants
- C1193-13......Standard Guide for Use of Joint Sealants.
- C1330-02(R2013)......Cylindrical Sealant Backing for Use with Cold Liquid Applied Sealants
- C1521-13......Standard Practice for Evaluating Adhesion of
 Installed Weatherproofing Sealant Joints
- D1056-14.....Specification for Flexible Cellular Materials—
 Sponge or Expanded Rubber
- C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide
- D. Environmental Protection Agency (EPA):
 - 40 CFR 59(2014)......National Volatile Organic Compound Emission

 Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - Vertical surfaces, provide non-staining ASTM C920, Type S or M, Grade NS, Class 25Use NT.
 - Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class
 Use T.
 - 3. Provide location(s) of exterior sealant as follows:
 - a. Metal to metal.
 - b. Voids where items penetrate exterior walls.

B. Interior Sealants:

- 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
- 2. Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25, Use NT.
- 4. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.

b. Joints occurring where substrates change.

2.2 COLOR:

A. Color of sealants to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI.
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants.
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.

- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.3 BACKING INSTALLATION:

- A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants.
- D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.
- F. Take all necessary steps to prevent three sided adhesion of sealants.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

A. General:

- 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F).
- 2. Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not use sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.

- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool joints to concave surface unless shown or specified otherwise.
- 8. Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise.
- C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

A. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Test for adhesion with a nondestructive method. Record results in a field adhesion test log. B. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer.
- B. After filling and finishing joints, remove masking tape.
- C. Leave adjacent surfaces in a clean and unstained condition.

3.8 LOCATIONS:

- A. Exterior Building Joints, Horizontal and Vertical:
 - 1. Metal to Metal: Type S-1, S-2
 - 2. Metal to Masonry or Stone: Type S-1
 - 3. Masonry to Masonry or Stone: Type S-1
 - 4. Stone to Stone: Type S-1
 - 5. Cast Stone to Cast Stone: Type S-1
 - 6. Threshold Setting Bed: Type S-1, S-3, S-4
 - 7. Masonry Expansion and Control Joints: Type S-6
 - 8. Wood to Masonry: Type S-1
- B. Metal Reglets and Flashings:
 - 1. Flashings to Wall: Type S-6
 - 2. Metal to Metal: Type S-6
- C. Sanitary Joints:
 - 1. Walls to Plumbing Fixtures: Type S-9
 - 2. Counter Tops to Walls: Type S-9
 - 3. Pipe Penetrations: Type S-9
- D. Horizontal Traffic Joints:
 - 1. Concrete Paving, Unit Pavers: Type S-11 or S-12
 - 2. Garage/Parking Decks: Type S-10
- E. High Temperature Joints over 204 degrees C (400 degrees F):
 - 1. Exhaust Pipes, Flues, Breech Stacks: Type S-7 or S-8
- F. Interior Caulking:
 - 1. Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1, C-2 and C-3.
 - Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1, C-2 and C-3.
 - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1, C-2 and C-3.
 - 4. Perimeter of Lead Faced Control Windows and Plaster or Gypsum Wallboard Walls: Types C-1, C-2 and C-3.

- 5. Exposed Isolation Joints at Top of Full Height Walls: Types C-1, C-2 and C-3.
- 6. Exposed Acoustical Joint at Sound Rated Partitions Type C-2.
- 7. Concealed Acoustic Sealant Type S-4, C-1, C-2 and C-3.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- R Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. RE: Resident Engineer
 - 4. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS
- B. Section 01 00 00, GENERAL REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 05 50 00, METAL FABRICATIONS
- E. Section 07 84 00, FIRESTOPPING
- F. Section 07 92 00, JOINT SEALANTS
- G. Section 09 91 00, PAINTING
- H. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS
- I. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- J. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- K. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- L. Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUITS and CABLES.
- M. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.

C. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 3. Conform to codes and standards as required by the specifications.

 Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COTR.
- 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- D. Equipment Service Organizations:
 - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site.
- E. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:

- Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
- 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- F. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COTR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COTR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS.

 Do not commence construction work on any system until the layout drawings have been approved.
- G. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment

have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.

E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient.

F. Layout Drawings:

- Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
 Refer to Section 00 72 00, GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION.
- 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
- 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or
- G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COTR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.

- 6. Wall, floor, and ceiling plates.
- H. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009......Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2007......Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA):

IP-21-2009......Specifications for Drives Using Double-V (Hexagonal) Belts

IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves

- E. Air Movement and Control Association (AMCA):
 - 410-96......Recommended Safety Practices for Air Moving
 Devices
- F. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code (BPVC):

Section I-2007.....Power Boilers

Section IX-2007......Welding and Brazing Qualifications

Code for Pressure Piping:

B31.1-2007.....Power Piping

G. American Society for Testing and Materials (ASTM):

A36/A36M-08.....Standard Specification for Carbon Structural
Steel

	11 V 1	VIIC & HEEC DESIGN				
		A575-96(2007)Stan	dard Specification for Steel Bars, Carbon,			
		Merc	nant Quality, M-Grades			
		E84-10Stan	dard Test Method for Surface Burning			
		Char	acteristics of Building Materials			
		E119-09cStan	dard Test Methods for Fire Tests of			
		Buil	ding Construction and Materials			
	н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings				
		Industry, Inc:				
		SP-58-2009Pipe	Hangers and Supports-Materials, Design and			
		Manu	facture, Selection, Application, and			
		Inst	allation			
		SP 69-2003Pipe	Hangers and Supports-Selection and			
		Appl	ication			
		SP 127-2001Brac	ing for Piping Systems, Seismic - Wind -			
		Dyna	mic, Design, Selection, Application			
I.		National Electrical Manufacturers Association (NEMA):				
		MG-1-2009	rs and Generators			
	J.	National Fire Protection Association (NFPA):				
		31-06Stan	dard for Installation of Oil-Burning			
		Equi	pment			
		54-09Nati	onal Fuel Gas Code			
		70-08Nati	onal Electrical Code			
		85-07Boil	er and Combustion Systems Hazards Code			
		90A-09Stan	dard for the Installation of Air			
		Cond	itioning and Ventilating Systems			
		101-09Life	Safety Code			

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COTR. Such repair or replacement shall be at no additional cost to the Government.

- 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center.
- C. Phasing of Work: Comply with all requirements shown on drawings or specified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F)

 minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.
- E. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed.

 Based on the inspections, a list of contract deficiencies will be

issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.

- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.

H. Sheaves and Pulleys:

- 1. Material: Pressed steel, or close grained cast iron.
- 2. Bore: Fixed or bushing type for securing to shaft with keys.
- 3. Balanced: Statically and dynamically.
- 4. Groove spacing for driving and driven pulleys shall be the same.

I. Drive Types, Based on ARI 435:

- 1. Provide adjustable-pitch //or fixed-pitch// drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.5 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.6 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.
- E. Controller shall be provided with the following operating features and accessories:
 - 1. Suitable for variable torque load.
 - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input line reactors (3% impedance) on incoming power line. Provide output line reactors on line between drive and motor where the distance between the breaker and motor exceeds 50 feet.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals.
- B. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
- C. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4

- mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.8 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.9 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.10 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- B. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors:

 Permitted in concrete not less than 102 mm (four inches) thick when approved by the COTR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COTR for each job condition.
- C. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.

- 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- D. Attachment to existing structure: Support from existing floor/roof frame
- E. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- G. Supports for Piping Systems:
 - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:

- Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
- 2) For vertical runs use epoxy painted or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.

2.11 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COTR.
- D. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide sleeve for pipe passing through floor of mechanical rooms.
- E. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

F. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.12 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.13 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COTR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COTR.
- E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.15 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COTR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COTR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COTR. Damaged or defective items in the opinion of the COTR shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COTR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COTR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COTR's approval,

carefully cut opening through construction no larger than absolutely necessary for the required installation.

M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70).

N. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.

- C. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- D. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- E. Rigging plan and methods shall be referred to COTR for evaluation prior to actual work.
- F. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COTR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted.

 Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COTR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government

property and shall be removed and delivered to COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks.
 Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Control valves and thermostatic elements.
 - d. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - e. Valve stems and rotating shafts.
 - f. Name plates.
 - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.

- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices.

 Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COTR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the COTR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 SUBMITTALS:

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Shop Drawings:

- 1. Provide documentation to demonstrate compliance with drawings and specifications.
- 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.

C. Manuals:

- 1. Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the COTR:
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

MG 1-2006 Rev. 1 2009 .. Motors and Generators

MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

Motors and Generators

C. National Fire Protection Association (NFPA):

70-2008......National Electrical Code (NEC)

- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2007.....Energy Standard for Buildings Except Low-Rise
Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
 - 1. Contractor's Option Electrically Commutated motor (EC Type): Motor shall be brushless DC type specifically designed for applications with heavy duty ball bearings and electronic commutation. The motor shall be speed controllable down to 20% of full speed and 85% efficient at all speeds.

- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time-delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240 volt or 480 volt systems: 208-230/460 volts, dual connection.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746~W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

J. Special Requirements:

- Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open- drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise

indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum	Premium	Efficie	ncies	Minimum Premium Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- D. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of all equipment. Coordinate the startup and contractor testing schedules with COTR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 $08\ 00$ COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

B. Noise Criteria:

1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL		
Bathrooms and Toilet Rooms	40		
Corridors (Nurse Stations)	40		
Laboratories (With Fume Hoods)	45 to 55		
Offices, Small Private	35		

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Seismic Restraint Requirements:
 - 1. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
 - b. All mechanical equipment mounted on vibration isolators shall be provided with seismic restraints capable of resisting a horizontal force of 100 percent of the weight of the equipment furnished.
 - 2. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Seismic restraint provisions and bolting.
 - 4. Acoustical enclosures.

- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.
- D. Seismic Requirements: Submittals are required for all equipment anchors, supports and seismic restraints. Submittals shall include weights, dimensions, standard connections, and manufacturer's certification that all specified equipment will withstand seismic Lateral Force requirements as shown on drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):
 - 2009Fundamentals Handbook, Chapter 7, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):

 A123/A123M-09.....Standard Specification for Zinc (Hot-Dip

Galvanized) Coatings on Iron and Steel Products

A307-07b......Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

D2240-05(2010)......Standard Test Method for Rubber Property
Durometer Hardness

- D. Manufacturers Standardization (MSS):
 - SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA):

29 CFR 1910.95.....Occupational Noise Exposure

- F. American Society of Civil Engineers (ASCE):
 - ASCE 7-10Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):

2009 IBC......International Building Code.

I. Department of Veterans Affairs (VA):

H-18-8 2010.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS

- A. Bolt pad mounted equipment, without vibration isolators, to the floor or other support using ASTM A307 standard bolting material.
- B. Floor mounted equipment, with vibration Isolators: Type SS. Where Type N isolators are used provide channel frame base horizontal restraints bolted to the floor, or other support, on all sides of the equipment Size and material required for the base shall be as recommended by the isolator manufacturer.
- C. On all sides of suspended equipment, provide bracing for rigid supports and provide restraints for resiliently supported equipment.

2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Captive Spring Mount for Seismic Restraint (Type SS):

10-23-15

- a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
- b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
- 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. // Isolators shall have a minimum seismic rating of one G. //
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Snubbers: Each spring mounted base shall have a minimum of four all-directional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.
- C. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Vibration Isolation:

10-23-15

- 1. No metal-to-metal contact will be permitted between fixed and floating parts.
- 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
- 3. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	20FT	FLOOR	SPAN	30FT FLOOR SPAN		40FT FLOOR SPAN			50FT FLOOR SPAN			
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
ROOF FANS												
ABOVE OCCUPIED AREA	ABOVE OCCUPIED AREAS:											
5 HP & OVER	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0
AIR HANDLING UNIT P.	ACKAGES	3										
SUSPENDED:												
UP THRU 5 HP		Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:												
UP TO 500 RPM		H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER		H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0
FLOOR MOUNTED:												
UP THRU 5 HP		S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:												
UP TO 500 RPM	R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS												
ALL		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS												
ALL		SS	0.75		SS	1.5	СВ	SS	1.5			NA

10-23-15

NOTES:

1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.

- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 07 11, HVAC INSULATION:
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS

1.3 QUALITY ASSURANCE

A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

B. Oualifications:

- TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
- 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
- 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include:

- a. Shall directly supervise all TAB work.
- b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
- c. Would follow all TAB work through its satisfactory completion.
- d. Shall provide final markings of settings of all HVAC adjustment devices.
- e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. Tab Criteria:

- One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Exhaust hoods/cabinets: 0 percent to plus 10 percent.
 - d. Minimum outside air: 0 percent to plus 10 percent.
 - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the

air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.

- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
- C. Associated Air Balance Council (AABC):
 - 2002......AABC National Standards for Total System
 Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 7th Edition 2005Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
 - 3rd Edition 2009Procedural Standards for Whole Building Systems

 Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 - 3^{rd} Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with

the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
 - C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.

- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow ____ days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in rooms, approximately fifteen (15) percent of all rooms. The Resident Engineer may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.

- C. Sound reference levels, formulas and coefficients shall be according to 2011 ASHRAE Handbook, "HVAC Applications", Chapter 48, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 16 meters (50 feet) for sound level location.

- 3. Where sound pressure levels are specified in terms of dB(A), measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- 4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Shafts, chases, are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
- 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor

retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 13. PC: Pumped condensate.
- 14. CTPD: Condensate transfer pump discharge.
- 15. CTPS: Condensate transfer pump suction.
- 16. VR: Vacuum condensate return.
- 17. CPD: Condensate pump discharge.
- 18. R: Pump recirculation.
- 19. CW: Cold water.
- 20. HW: Hot water.
- 21. CH: Chilled water supply.
- 22. CHR: Chilled water return.
- 23. RS: Refrigerant suction.
- 24. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and

- a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
- **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
- 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
- (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors $\left(\frac{1}{2} \right)$
- (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

- (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.

e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

Vinyl Acetate), Rigid.

- - Water-Resistant, Vapor-Barrier

 MIL-C-20079H-87

 Cloth Glass: Tape Textile Glass: and Thread
 - MIL-C-20079H-87......Cloth, Glass; Tape, Textile Glass; and Thread,
 Glass and Wire-Reinforced Glass
- D. American Society for Testing and Materials (ASTM):
 - A167-99(2004)......Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet, and Strip
 - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C411-05......Standard test method for Hot-Surface

 Performance of High-Temperature Thermal

 Insulation
 - C449-07.....Standard Specification for Mineral Fiber

 Hydraulic-Setting Thermal Insulating and

 Finishing Cement
 - C533-09......Standard Specification for Calcium Silicate

 Block and Pipe Thermal Insulation

1 11 V.	ac & Base Dabion
	C534-08Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
	C547-07Standard Specification for Mineral Fiber pipe
	Insulation
	C552-07Standard Specification for Cellular Glass
	Thermal Insulation
	C553-08Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
	C585-09Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
	C612-10Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
	C1126-04Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
	C1136-10Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
	D1668-97a (2006)Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
	E84-10Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
	E119-09cStandard Test Method for Fire Tests of Building
	Construction and Materials
	E136-09bStandard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)
Ε.	National Fire Protection Association (NFPA):
	90A-09Standard for the Installation of Air
	Conditioning and Ventilating Systems
	96-08Standards for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
	101-09Life Safety Code
	251-06Standard methods of Tests of Fire Endurance of
	Building Construction Materials

- 255-06......Standard Method of tests of Surface Burning
 Characteristics of Building Materials
- F. Underwriters Laboratories, Inc (UL):
 - 723......UL Standard for Safety Test for Surface Burning
 Characteristics of Building Materials with
 Revision of 09/08
- G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS):
 - SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m^3 (2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.3 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.5 INSULATION FACINGS AND JACKETS

- A. See HVAC Design Manual Appendix 7-A Table 7-Al for high humidity areas. Field applied vapor barrier jackets shall be provided for all exterior piping piping and ductwork as well as on interior piping and ductwork exposed to outdoor air conveying fluids below ambient temperature. In addition, in high humidity areas, field applied vapor barrier jackets shall be provided for all interior piping conveying fluids below ambient temperature.
- B. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- C. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- D. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- E. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30)

- inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- H. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.9 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.10 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COTR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.
 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous

through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- G. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
- H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- J. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.

- 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- K. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
- L. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.

- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service
 jacket): Supply air duct.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.

B. Flexible Mineral Fiber Blanket:

- 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:

- a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
- b. Concealed return air ductwork in other locations need not be insulated
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:

- Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.

E. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)									
Nominal Pipe Size Millimeters (Inches)									
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75	100 (4) and Above				
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)						
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)				
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)				
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)				

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 19 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 19 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader

sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
COTR. The Contractor shall review and comment on the tests prior to
approval. The Contractor shall provide the required labor, materials,
and test equipment identified in the test procedure to perform the
tests. The Commissioning Agent will witness and document the testing.
The Contractor shall sign the test reports to verify tests were
performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS,
for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COTR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 19 00. The instruction shall be scheduled in coordination with the VA COTR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

---- END ----

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems.
- B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

C. Definitions:

- 1. Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.

D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - 1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Gages
 - i. Pipe and equipment supports
 - j. Refrigerant and oil
 - k. Pipe/conduit roof penetration cover
 - 1. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002).......Standard for Refrigerant Liquid Receivers

	730-2005Flow Capacity Rating of Suction-Line Filters
	and Suction-Line Filter-Driers
	750-2007Thermostatic Refrigerant Expansion Valves
	760-2007Performance Rating of Solenoid Valves for Use
	with Volatile Refrigerants
C.	American Society of Heating Refrigerating and Air Conditioning
	Engineers (ASHRAE):
	ANSI/ASHRAE 15-2007Safety Standard for Refrigeration Systems
	(ANSI)
	ANSI/ASHRAE 17-2008Method of Testing Capacity of Thermostatic
	Refrigerant Expansion Valves (ANSI)
	63.1-95 (RA 01)Method of Testing Liquid Line Refrigerant
	Driers (ANSI)
D.	American National Standards Institute (ANSI):
	ASME (ANSI)A13.1-2007Scheme for Identification of Piping Systems
	Z535.1-2006Safety Color Code
Ε.	American Society of Mechanical Engineers (ASME):
	ANSI/ASME B16.22-2001 (R2005)
	Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI)
	ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged
	Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI)
	ANSI/ASME B31.5-2006Refrigeration Piping and Heat Transfer
	Components (ANSI)
	ANSI/ASME B40.100-2005Pressure Gauges and Gauge Attachments
	ANSI/ASME B40.200-2008Thermometers, Direct Reading and Remote Reading
F.	American Society for Testing and Materials (ASTM)
	Al26-04Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe FittingsB32-08
	Standard Specification for Solder Metal
	B88-03Standard Specification for Seamless Copper
	Water Tube
	B88M-05Standard Specification for Seamless Copper
	Water Tube (Metric)
	B280-08Standard Specification for Seamless Copper Tube
	for Air Conditioning and Refrigeration Field
	Service

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04.....Standard Specification for Filler Metals for Brazing and Braze Welding

H. Federal Specifications (Fed. Spec.)

Fed. Spec. GG

- I. Underwriters Laboratories (U.L.):
 - U.L.207-2009......Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M,
 45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
 - 2. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM Al26, Grade B. Set valves in accordance with ASHRAE Standard 15.
 - c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, two-position, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with

- suitable NEMA 250 enclosure of type required by location and normally closed holding coil.
- d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 3. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- 4. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication.

 Provide screwed brass seal caps.
- 5. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- 6. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.

2.2 GAGES

- A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Celsius scale in 1-degree (Fahrenheit scale in 2-degree) graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 1525 mm (5 feet) of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 1525 to 2135 mm (5 to 7 feet) above the finished floor. Remote element type temperature gages shall be provided in thermal wells located 2135 mm (7 feet) above the finished floor.
- B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 90 mm (3-1/2 inches) in diameter with a range from 0 kPa (0 psig) to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.
 - 1. Suction: 101 kPa (30 inches Hg) vacuum to 1723 kPa (gage) (250 psig).
 - 2. Discharge: 0 to 3445 kPa (gage) (0 to 500 psig).

2.3 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.4 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.5 PIPE/CONDUIT ROOF PENETRATION COVER

- A. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 300 mm (12 inches) overall height, continuous welded corner seams, treated wood nailer, 38 mm (1-1/2 inch) thick, 48 kg/cu.m (3 lb/cu.ft.) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.
- B. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.

C. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

2.6 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
 - 4. Use copper tubing in protective conduit when installed below ground.
 - 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

B. Joint Construction:

- 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.

- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC,.
- F. Seismic Bracing: Refer to specification Section 13 05 41, SEISMIC RESTRAINTS REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS, for bracing of piping in seismic areas.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - 1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

- A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of COTR. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
 - 1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
 - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group Al refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - 1. Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.

3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - 2. Exhaust duct with HEPA filters for Negative Pressure Isolation Room.
 - 3. Exhaust duct for chemical fume hoods.

B. Definitions:

- 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
- Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
- 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- 4. Exposed Duct: exposed to weather.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- D. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same

material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 7. Flexible connections.
 - 8. Instrument test fittings.
 - 9. COMMON WORK RESULTS FOR HVAC.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11Common Work Results for HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):
 - ASCE7-05......Minimum Design Loads for Buildings and Other
 Structures
- C. American Society for Testing and Materials (ASTM):

	A167-99(2009)Standard Specification for Stainless and
	Heat-Resisting Chromium-Nickel Steel Plate,
	Sheet, and Strip
	A653-09Standard Specification for Steel Sheet,
	Zinc-Coated (Galvanized) or Zinc-Iron Alloy
	coated (Galvannealed) by the Hot-Dip process
	A1011-09aStandard Specification for Steel, Sheet and
	Strip, Hot rolled, Carbon, structural, High-
	Strength Low-Alloy, High Strength Low-Alloy with
	Improved Formability, and Ultra-High Strength
	B209-07 Standard Specification for Aluminum and
	Aluminum-Alloy Sheet and Plate
	C1071-05elStandard Specification for Fibrous Glass Duct
	Lining Insulation (Thermal and Sound Absorbing
	Material)
	E84-09aStandard Test Method for Surface Burning
	Characteristics of Building Materials
D.	National Fire Protection Association (NFPA):
	90A-09Standard for the Installation of Air
	Conditioning and Ventilating Systems
	96-08Standard for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
Ε.	Sheet Metal and Air Conditioning Contractors National Association
	(SMACNA):
	2nd Edition - 2005HVAC Duct Construction Standards, Metal and
	Flexible
	1st Edition - 1985HVAC Air Duct Leakage Test Manual
	6th Edition - 2003Fibrous Glass Duct Construction Standards
F.	Underwriters Laboratories, Inc. (UL):
	181-08Factory-Made Air Ducts and Air Connectors
	555-06Standard for Fire Dampers
	555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts

- and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Laboratory Hood, Exhaust and Associated Ductwork: 1.3 mm (18 gage) all welded Stainless steel.
- E. Biological Safety Cabinet, H12, Hood Exhaust and Associated Ductwork: 1.3 mm (18 gage) all welded stainless steel.
- F. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - 1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam.

- Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
- Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the COTR.
- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS)

- A. Duct sizes shown on drawings for lined duct are clear opening inside lining.
- B. Duct liner is only permitted to be used for return, relief and general exhaust ducts. Duct liner is not permitted for outside air ducts, supply air ducts or any other positive pressure ductwork (provide exterior insulation only).
- C. Rectangular Duct or Casing Liner: ASTM C1071, Type I (flexible), or Type II (board), 25 mm (one inch) minimum thickness, applied with mechanical fasteners and 100 percent coverage of adhesive in conformance with SMACNA, Duct Liner Application Standard.
- D. Round and Oval Duct Liner: Factory fabricated double-walled with one thick sound insulation and inner perforated galvanized metal liner. Construction shall comply with flame and smoke rating required by NFPA 90A. Metal liner shall be 20 to 24 gage having perforations not

exceeding 3/32 inch diameter and approximately 22 percent free area. Metal liner for fittings need not be perforated. Assemblies shall be complete with continuous sheet Mylar liner, 2 mil thickness, between the perforated liner and the insulation to prevent erosion of the insulation. Provide liner couplings/spacer for metal liner. At the end of insulated sections, provide insulation end fittings to reduce outer shell to liner size. Provide liner spacing/concentricity leaving airway unobstructed.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each fire damper (for link service), smoke damper and automatic control damper.
 - 2. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream
- B. Minimum requirements for fire dampers:
 - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 1500 fpm. Maximum static pressure loss: 0.13 inch W.G..

- B. Maximum air leakage, closed damper: 4.0 CFM per square foot at 3 inch W.G. differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 12 inch maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 160 degrees F fusible link, 3 hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to air handling units, install a non-combustible flexible connection of 29 ounce neoprene coated fiberglass fabric approximately 6 inches wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 2 inches on center. Fabric shall not be stressed other than by air pressure. Allow at least one inch slack to insure that no vibration is transmitted.

2.11 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 12 inches above finish roof service, continuous welded corner seams, treated wood nailer, 1-1/2 inch thick, 3 pound/cubic feet density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.12 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.13 DUCT MOUNTEDTHERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.14 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum two inch length for insulated duct, and a minimum one inch length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to

coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- E. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- F. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- G. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.

- 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
- 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
- 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- H. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- I. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COTR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the COTR on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.

- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the COTR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the COTR and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COTR.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 DUCTWORK EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of $_145$ km/h ($_90$ mph).

3.4 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.5 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency

- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - 2. Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. American Society for Testing and Materials (ASTM):

Fans

B117-07a	.Standard Practice for Operating Salt Spray (Fog)
	Apparatus
D1735-08	.Standard Practice for Testing Water Resistance
	of Coatings Using Water Fog Apparatus
D3359-08	.Standard Test Methods for Measuring Adhesion by
	Tape Test
G152-06	.Standard Practice for Operating Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials
G153-04	.Standard Practice for Operating Enclosed Carbon
	Arc Light Apparatus for Exposure of Non-Metallic
	Materials

- D. National Fire Protection Association (NFPA):
 - NFPA 96-08.....Standard for Ventilation Control and Fire

 Protection of Commercial Cooking Operations
- E. National Sanitation Foundation (NSF):
 - 37-07.....Air Curtains for Entrance Ways in Food and Food Service Establishments
- F. Underwriters Laboratories, Inc. (UL):
 - 181-2005......Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Up-blast Type: Top discharge exhauster, motor out of air stream.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code:
 - 1062 GRD-84.....Certification, Rating, and Test Manual $\mathbf{4}^{\text{th}}$ Edition
- C. American Society of Civil Engineers (ASCE):
 - ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):
 - A167-99 (2004)......Standard Specification for Stainless and

 Heat-Resisting Chromium-Nickel Steel Plate,

 Sheet and Strip

B209-07......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A-09......Standard for the Installation of Air Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL):

181-08......UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 AIR OUTLETS AND INLETS

A. Materials:

- 1. Aluminum except that all supply air outlets installed in operating rooms and Cystoscopy rooms (see Article 2.3C.3) shall be stainless steel. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT for NC criteria.

C. Air Supply Outlets:

- Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or controlgrid and opposed blade damper.
 - c. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of

air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.

- 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - 1. Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.
 - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin.
 - 5. Door Grilles: Are furnished with the doors.
 - 6. Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

E. Acoustic Transfer Grille: Aluminum, suitable for partition or wall mounting.

2.3 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COTR. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (90 mph) or, in coastal areas, as defined in ASCE 7 Fig. 1.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to COTR, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
 - 2. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to

meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning
 Engineers, Inc. (ASHRAE):
 - 52.2-2007..... Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME):
 - NQA-1-2008......Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL):
 900; Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the COTR.
- B. The COTR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

HVAC Filter Types Table 2.2C							
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type			
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway			
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge			

D. HEPA Filters

	HEPA Filters Table 2.2D							
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction				
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body				
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank				

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

- A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
- B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be

- adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-93 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTERS STANDARD CAPACITY (FINAL FILTER APPLICATION)

- A. Air filters shall be HEPA grade standard capacity air filters with waterproof micro glass fiber media, corrugated aluminum separators, urethane sealant, 16-gauge steel enclosing frame and fluid sealing gasket. Sizes shall be as noted on drawings or other supporting materials.
- B. Construction: Filter media shall be one continuous pleating of microfine glass fiber media. Pleats shall be uniformly separated by corrugated

aluminum separators incorporating a hemmed edge to prevent damage to the media. The media pack shall be potted into the enclosing frame with a fire-retardant urethane sealant. The enclosing frame shall be of 16-gauge steel, with a zinc aluminum alloy finish, and shall be bonded to the media pack to form a rugged and durable enclosure. The filter shall be assembled without the use of fasteners to ensure no frame penetrations. Overall dimensional tolerance shall be correct within - 1/8", +0", and square within 1/8". A poured-in-place seamless sealing gasket shall be included on the downstream side of the enclosing frame to form a positive seal upon installation.

C. Performance: The filter shall have a tested efficiency of 99.97%when evaluated according to IEST Recommended Practice. Initial resistance to airflow shall not exceed 1.0" w.g. at rated capacity. Filter shall be listed by Underwriters Laboratories as UL 900. The filter shall be capable of withstanding 10" w.g. without failure of the media pack. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

HEPA Per	rformance (Standard C Table 2.5A	apacity)
Nominal Size	Airflow Capacity	Media Area
(inches)	(cfm)	(Square Feet)
24H by 24W by 12D	1080 at 1.0" w.g.	153
24H by 12W by 12D	500 at 1.0" w.g.	33
Follow manufacturers' recommendation for change out		
resistance, typically double the initial.		

D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.

2.6 HEPA FILTERS HIGH CAPACITY V-BANK HIGH CAPACITY FILTERS (FINAL FILTER APPLICATION)

- A. Air filters shall be absolute grade HEPA filters consisting of pleated media packs assembled in a V-bank configuration, polyurethane sealant, anodized aluminum enclosure and seamless fluid sealing gasket. Sizes shall be as noted on enclosed drawings or other supporting materials.
- B. Construction: Filter media shall be micro fiber glass formed into minipleat pleat-in-pleat V-bank design. The media packs shall be potted into the enclosing frame with fire retardant polyurethane sealant. An enclosing frame of anodized extruded aluminum shall form a rugged and durable enclosure. A seamless sealing gasket shall be included on the downstream side of the filter to form a positive seal upon installation.
- C. Performance: Filter efficiency at 0.3 micron shall be 99.99% when evaluated according to the IEST Recommended Practice for applicable

type. Each filter shall be labeled as to tested performance. Initial resistance target shall not exceed 1.0" w.g. at rated airflow.

HEPA Performance V-Bank Style (High Capacity)		
	Table 2.5B	
Nominal Size	Airflow Capacity	Media Area
(inches)	(cfm)	(Square Feet)
24H by 24W by 12D	2000 at 1.0" w.g.	390
24H by 12W by 12D	900 at 1.0" w.g.	174
Follow manufacturers' recommendation for change out		
resistance, typically double the initial.		

- D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.
- E. Filter must be listed as UL 586 and UL 900 per Underwriters Laboratories. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

2.7 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - 1. Filter housing shall be two-stage filter system consisting of 16-gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. //Where installed outdoors, the housing shall be weatherproof and suitable for rooftop/outdoor installation.// The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-tofilter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18gauge galvanized steel, equipped with centering dimples, multiple

fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- 4. Manufacturer shall provide evidence of facility certification to ISO 9001:2000.

B. Side-Access Housing (HEPA Grade)

- 1. Filter housing shall be two-stage filter system consisting of 14-gauge galvanized steel enclosure, spring-loaded crank-type sealing assembly for gasket seal type final filters, insulated dual-access doors with gasketing and positive sealing doorknobs. In-line housing depth shall not exceed 25". Sizes shall be as noted on enclosed drawings or other supporting materials.
- 2. Construction: The housing shall be constructed of 14-gauge galvanized steel with mating flanges to facilitate attachment to other system components. All pressure boundaries shall be of all welded construction. The housing shall be weatherproof and suitable for rooftop/outdoor installation. A prefilter track to accommodate nominal 2" deep prefilters, shall be an integral component of the housing. The housing shall incorporate a spring-loaded crank-type final filter sealing mechanism. The mechanism shall be geared to exert 700 pounds of pressure against each filter. The clamping frame shall have a continuous flat surface seal to compress all four downstream gasketed surfaces of the downstream seal filter. The final filter locking mechanism shall include a 3/4" socket adapter to facilitate opening or closing the mechanism. Insulated dual access doors shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable UV-resistant positive sealing knobs. The access doors shall be both hinged for swing open operation or designed to be completely removable. The housing shall include static pressure ports (1/8" NPT male) to facilitate pressure drop measurements across prefilter, final filter, or combination thereof.

VA HVAC & ELEC DESIGN

- 3. Performance: Manufacturer shall provide evidence of facility certification to ISO 9001:2008.
- C. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.8 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.9 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the COTR.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 74 13 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Piping and duct insulation.
- C. Section 23 31 00, HVAC DUCTS and CASINGS: Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing, adjusting and balancing of air and water flows.
- E. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Types of motor starters.
- F. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS:
- G. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.

- 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
- 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
- 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for RTUs shall include fans, drives, motors, coils, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.
 - 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.

- 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation.

 Internal lining of supply air ductwork with sound absorbing material is not permitted.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.

 Submit written results of factory tests for approval prior to shipping.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - 1. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).

4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. Air Moving and Conditioning Association (AMCA):
 210-07.....Laboratory Methods of Testing Fans for Rating
- D. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA):
 9-90 (R2008).....Load Ratings and Fatigue life for Ball Bearings
- E. American Society of Heating, Refrigerating and Air Conditioning
 Engineers (ASHRAE):
 - 51-2007......Laboratory Methods of Testing Fans for Rating
- F. American Society for Testing and Materials (ASTM):
 - A653/653M-02......Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
 - B117-07a.....Salt Spray (Fog) Testing
 - C1071-05el.....Standard Specification for Fibrous Glass Duct

 Lining Insulation (Thermal and Sound Absorbing

 Material)
 - D1654-08.....Standard Method for Evaluation of Painted or
 Coated Specimens Subjected to Corrosive
 Environments
 - D1735-08......Water Resistance of Coatings Using Water Fog Apparatus
 - D3359-08......Standard Test Methods for Measuring Adhesion by

 Tape Test

- E84-10.....Standard Test Method for Surface Burning

 Characteristics of Building Materials
- G. Anti-Friction Bearing Manufacturer's Association, Inc. (AFBMA):
 9-90......Load Ratings and Fatigue life for Ball Bearings
- I. National Fire Protection Association (NFPA):
 NFPA 90A......Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- J. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

A. General:

- 1. Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
- 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site.

Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.

- 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.

7. Corrosion Protection:

- a. Coil Treatment: Epoxy Immersion Coating-Electrically Deposited:
 The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil.

 Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - 1) Salt Spray Resistance (Minimum 6,000 Hours)
 - 2) Humidity Resistance (Minimum 1,000 Hours)

- 3) Water Immersion (Minimum 260 Hours)
- 4) Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- 5) Impact Resistance (Up to 160 Inch/Pound)
- b. Casing Surfaces (Exterior and Interior): All exposed and accessible exterior and interior metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment sprayapplied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) and 500 hours UV resistance (ASTM D4587).

B. Base:

- 1. Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability.
- 2. RTUs shall be completely self supporting for installation on steel support pedestals.
- 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.

C. Casing (including wall, floor and roof):

- 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.
- 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge) solid or perforated inner skin to limit wall, roof and floor deflection to not exceed an L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized to ±5 in. w.g. (±1245 Pa). The outer (skin) and inner panels shall be solid.

- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and 48 kg/m³ (3.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft² OF/BTU). Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Outer Panel 0.8 mm (22 Gage) Minimum

Inner Panel 0.8 mm (22 Gage) Minimum

Insulation Foam

Thickness 50 mm (2 inch) Minimum

Density 48 kg/m³ (3.0 lb/ft³) Minimum

Total R Value 2.3 m².K/W (13.0 ft².ºF.hr/Btu)

Minimum

Table 2.1.C.4

- 5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, coil section shall include a minimum 150 mm x

150 mm (6 inch \times 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.

- a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inches water gage).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.

- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - 3. Installation, including frame, shall be designed and sealed to prevent blow-by.

F. Housed Centrifugal Fan Sections:

- 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined or forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000 hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
- 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if

bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).

- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- H. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. Diffuser Section: Furnish a diffuser segment with perforated diffuser plate immediately downstream of supply fan to assure uniform

VA HVAC & ELEC DESIGN

distribution of leaving air across the face of the downstream after-filters to create uniform velocity profiles across the entire opening. Bolt or weld diffuser plate to a sturdy steel support frame so that it remains rigid. Manufacturer shall include any diffuser section pressure loss in excess of diffuser plate and this value shall be included in unspecified internal losses when selecting fan.

- J. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.
- K. Discharge Section: Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- L. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Vapor-proof lights using cast aluminum base style with glass globe and cast aluminum guard shall be installed in access sections for fan, mixing box, and any section over 300mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt one phase connection at junction box.
 - 2. Install compatible 100 watt bulb in each light fixture.
 - 3. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.

VA HVAC & ELEC DESIGN

- C. Install seismic restraints for roof top units. Refer to specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
 - D. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
 - E. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - F. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies split-systems air conditioners.
- B. Definitions:
 - Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
 - 2. Seasonal Energy Efficiency Ratio (EER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
 - 3. Unitary: A Unitary Air Conditioner consists of one or more factory—made assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
 - 4. Where such equipment is provided in more than one assembly the separated assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Requirements for piping insulation.
- C. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant pipes and fittings.
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Requirements for testing and adjusting air balance.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES

- B. Manufacturer's literature and data:
 - 1. Sufficient information, including capacities, pressure drops and piping connections clearly presented, shall be included to determine compliance with drawings and specifications for units noted below:
 - a. Unitary air conditioners:
 - 2) Split systems
 - 2. Unit Dimensions required clearances, operating weights accessories and start-up instructions.
 - 3. Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
 - 4. Mounting and flashing of the roof curb to the roofing structure with coordinating requirements for the roof membrane system.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to COTR three weeks prior to final inspection.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- C. Military Specifications (Mil. Specs.):
 MIL-PRF-26915D-06......Primer Coating, for Steel Surfaces
- D. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 210/240-08......Performance Rating of Unitary Air-Conditioning

and Air-Source Heat Pump Equipment

340/360-07......Performance Rating of Commercial and Industrial
Unitary Air-Conditioning and Heat Pump Equipment

	520-04Performance Rating of Positive Displacement
	Condensing Units
Ε.	Air Movement and Control Association (AMCA):
	210-07Laboratory Methods of Testing Fans for
	Aerodynamic Performance Rating (ANSI)
	410-96Recommended Safety Practices for Users and
	Installers of Industrial and Commercial Fans
F.	American National Standards Institute (ANSI):
	S12.51-02(R2007)Acoustics - Determination of Sound Power Levels
	of Noise Sources Using Sound Pressure -
	Precision Method for Reverberation Rooms (same
	as ISO 3741:1999)
G.	American Society of Heating, Refrigerating, and Air-Conditioning
	Engineers (ASHRAE):
	2008 HandbookHVAC Systems and Equipment
	15-10Safety Standard for Refrigeration Systems (ANSI)
н.	American Society of Testing and Materials (ASTM):
	B117-09Standard Practice for Operating Salt Spray (Fog)
	Apparatus
I.	American Society of Civil Engineers (ASCE)
	ASCE 7-10Minimum Design Loads for Buildings and Other
	Structures
J.	National Electrical Manufacturer's Association (NEMA):
	MG 1-09 (R2010)Motors and Generators (ANSI)
	ICS 1-00 (R2005, R2008). Industrial Controls and Systems: General
	Requirements

K. National Fire Protection Association (NFPA) Publications:

90A-09.....Standard for the Installation of Air-

Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 UNITARY AIR CONDITIONERS - GENERAL

- A. Applicable ARI Standards:
 - 1. Cooling Capacity 39.6 kW (135,000 Btu/h) and More: AHRI 340/ 360.
 - Cooling Capacity Less Than 39.6 kW (135,000 Btu/h): AHRI 210/240.
 Units shall be listed in the ARI Directory of Certified Unitary Air-Conditioners.
- B. Performance Rating: Cooling capacity of units shall meet the sensible heat and total heat requirements shown in the contract documents. In selecting unit size, make true allowance for "sensible to total heat ratio" to satisfy required sensible cooling capacity.

C. Corrosion Prevention: Unless specified otherwise, equipment fabricated from ferrous metals that do not have a zinc coating or a duplex coating of zinc and paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall be tested for 500 hours. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no signs of blistering, wrinkling or cracking, no loss of adhesion, and the specimen shall show no signs of rust beyond 3 mm (1/8-inch) on both sides from the scratch mark. For units located in high humidity areas, provide factory-coated coils for protection from corrosion by using multiple stage electrodeposition coating process.

2.2 SPLIT-SYSTEM AIR CONDITIONERS

- A. Description: Factory assembled and tested, wall-mounted or ceiling mounted unit, with an air- cooled remote condensing unit, and field-installed refrigeration piping. B. Concealed Evaporator Components:
 - 1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
 - 2. Insulation: Factory-applied duct liner.
 - 3. Drain Pans: Galvanized steel, with connection for drain; insulated and complying with ASHRAE 62.1-2007.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
 - 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 6. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
 - 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multitapped, multi-speed motors with internal thermal protection and permanent lubrication.
 - 8. Disposable Filters: 25 mm (1 inch) thick, in fiberboard frames with MERV rating of 7 or higher according to ASHRAE 52.2 .
 - 9. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- B. Wall-Mounting, Evaporator-Fan Components:
 - Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.

- 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- 3. Drain Pan and Drain Connection: Comply with ASHRAE 62.1-2007.
- 4. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
- 5. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
- 6. Fan: Direct drive, centrifugal fan.
- 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multitapped, multi-speed motors with internal thermal protection and permanent lubrication.
- 8. Filters: Disposable, with MERV rating of 7 or higher according to ASHRAE 52.2.
- C. Ceiling-Mounting, Evaporator-Fan Components:
 - 1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Architect, and discharge drain pans with drain connection.
 - 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
 - 3. Drain Pan and Drain Connection: Comply with ASHRAE 62.1-2007.
 - 4. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with thermal-expansion valve.
 - 5. Electric-Resistance Heating Coil: Helical, nickel-chrome, resistance-wire heating elements with refractory ceramic support bushings; automatic-reset thermal cutout; built-in magnetic contactors; manual-reset thermal cutout; airflow proving device; and one-time fuses in terminal box for overcurrent protection.
 - 6. Fan: Direct drive, centrifugal fan, and integral condensate pump.
 - 7. Fan Motors: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT for multitapped, multi-speed motors with internal thermal protection and permanent lubrication.
 - 8. Filters: Disposable, with MERV rating of 7 or higher according to ASHRAE 52.2.
- D. Air-Cooled, Compressor-Condenser Components:

- Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Service valves, fittings, and gage ports shall be brass and located outside of the casing.
- Compressor: Hermetically sealed scroll mounted on vibration isolation. Compressor motor shall have thermal- and currentsensitive overload devices, start capacitor, relay, and contactor.
- 3. Compressor motor with manual-reset, high-pressure switch and automatic-reset, low-pressure switch.
- 4. Refrigerant: R-410A unless otherwise indicated.
- 5. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins, complying with AHRI 210/240, and with liquid subcooler.
- 6. Fan: Aluminum, propeller type, directly connected to motor.
- 7. Motor: Permanently lubricated, with integral thermal-overload protection.
- 8. Mounting Base: Polyethylene.
- 9. Minimum Energy Efficiency: Comply with ASHRAE/IESNA 90.1-2004, "Energy Standard for Buildings except Low-Rise Residential Buildings."

PART 3 EXECUTION

3.1 INSTALLATION

- A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." ARI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00, ROOF ACCESSORIES. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- B. Rooftop Unit Support: Install unit level on structural curbs pilings.

 Coordinate wall penetrations and flashing with wall construction. Secure rooftop units to structural support with anchor bolts.
- C. Install wind and seismic restraints according to manufacturer's written instructions. Wind and seismically restrained vibration isolation roofcurb rails are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Install units level and plumb maintaining manufacturer's recommended clearances and tolerances.
- E. Install vibration spring isolators under base of self contained unit, with minimum static deflection of 25 mm (1 inch) unless otherwise

- indicated. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- F. Install roof-mounting compressor-condenser components on equipment supports specified in Section 07 72 00, ROOF ACCESSORIES. Anchor units to supports with removable, cadmium-plated fasteners.
- G. Install seismic restraints.
- H. Install compressor-condenser components on restrained, spring isolators with a minimum static deflection of 25 mm (1 inch) unless otherwise indicated. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- I. Install and connect precharged refrigerant tubing to component's quickconnect fittings. Install tubing to allow access to unit.
- J. Install wall sleeves in finished wall assembly and weatherproof.
 Install and anchor wall sleeves to withstand, without damage seismic forces as required by code.

3.2 CONNECTIONS

- A. Verify condensate drainage requirements.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to units to allow service and maintenance.
- D. Install ducts to termination at top of roof curb. Cut roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
- E. Connect supply ducts to units with flexible duct connectors specified in Section 23 31 00, HVAC DUCTS and CASINGS.
- F. Install return-air duct continuously through roof structure.
- G. Install normal-weight, 20.7-MPa (3000-psi), compressive strength (28-day) concrete mix inside roof curb, 100 mm (4 inches) thick.
- H. Ground equipment and install power wiring, switches, and controls for self contained and split systems.
- I. Connect refrigerant piping to coils with shutoff valves on the suction and liquid lines at the coil and a union or flange at each connection at the coil and condenser.
- J. Install ducts to the units with flexible duct connections.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with requirements. Inspect for and remove shipping bolts, blocks, and tiedown straps. After electrical circuitry has been energized, start units

to confirm proper motor rotation and unit operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Remove and replace malfunctioning units and retest as specified above.

3.4 INSTRUCTIONS

Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 STARTUP AND TESTING

The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COTR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

---END---

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction

and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt

of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests.
 The Contractor shall notify the Government through the COTR a minimum of 15 working days prior to the manufacturer's performing the factory tests.
 - 2. Four copies of certified test reports shall be furnished to the COTR two weeks prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When materials and equipment fail factory tests, and re-testing and re-inspection is required, the Contractor shall be liable for all additional expenses for the Government to witness re-testing.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COTR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory:
 - 1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical

- components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the COTR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COTR.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards,

cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm2), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address.

1.12 SUBMITTALS

- A. Submit to the COTR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system

or assembly as a whole. Partial submittals will not be considered for approval.

- 1. Mark the submittals, "SUBMITTED UNDER SECTION_____"
- 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions

covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.

- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements.

 Instructors shall be thoroughly familiar with all aspects of the installation, and shall be trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COTR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10	Standard	Specification	for	Vinyl	Chloride
	Plastic 1	Pressure-Sensit	ive	Electi	rical
	Insulati	ng Tape			

D2304-10......Test Method for Thermal Endurance of Rigid

Electrical Insulating Materials

D3005-10.....Low-Temperature Resistant Vinyl Chloride

Plastic Pressure-Sensitive Electrical

Insulating Tape

C. National Electrical Manufacturers Association (NEMA):

WC 70-09......Power Cables Rated 2000 Volts or Less for the
Distribution of Electrical Energy

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

486D-05.....Sealed Wire Connector Systems

486E-09..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors

493-07......Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cables

514B-04......Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

E. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V	
Black	A	Brown	
Red	В	Orange	
Blue	С	Yellow	
White	Neutral	Gray *	
* or white with	colored (other	than green) tracer.	

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COTR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.

C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REOUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.

2. Test Reports:

a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.

3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07Standard	Specification	for	Hard-Drawn	Copper
Wire				

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-LayStranded Copper Conductors, Hard, Medium-Hard,
 or Soft
- D. National Fire Protection Association (NFPA):
- E. Underwriters Laboratories, Inc. (UL):
 - 44-10Thermoset-Insulated Wires and Cables
 83-08Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.4 GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

B. Above Grade:

- 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.

- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- C. National Fire Protection Association (NFPA):
 - 70-11......National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - 1-05.....Flexible Metal Conduit
 - 5-11.....Surface Metal Raceway and Fittings
 - 6-07...... Electrical Rigid Metal Conduit Steel
 - 50-95..... Enclosures for Electrical Equipment
 - 360-13.....Liquid-Tight Flexible Steel Conduit
 - 467-13..... Grounding and Bonding Equipment
 - 514A-13.....Metallic Outlet Boxes
 - 514B-12......Conduit, Tubing, and Cable Fittings
 - 514C-07......Nonmetallic Outlet Boxes, Flush-Device Boxes

and Covers

	651-11	.Schedule 40 and 80 Rigid PVC Conduit and
		Fittings
	651A-11	.Type EB and A Rigid PVC Conduit and HDPE
		Conduit
	797-07	.Electrical Metallic Tubing
	1242-06	.Electrical Intermediate Metal Conduit - Steel
Ε.	National Electrical Man	ufacturers Association (NEMA):
	TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
		Conduit
	TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
	FB1-12	.Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing and
		Cable
	FB2.10-13	.Selection and Installation Guidelines for
		Fittings for use with Non-Flexible Conduit or
		Tubing (Rigid Metal Conduit, Intermediate
		Metallic Conduit, and Electrical Metallic
		Tubing)
	FB2.20-12	.Selection and Installation Guidelines for
		Fittings for use with Flexible Electrical
		Conduit and Cable
F.	American Iron and Steel	Institute (AISI):
	S100-2007	.North American Specification for the Design of
		Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
 - 4. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.

- 5. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 6. Flexible Metal Conduit: Shall conform to UL 1.
- 7. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 8. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 9. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

3. Electrical Metallic Tubing Fittings:

- a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
- b. Only steel or malleable iron materials are acceptable.

- c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.

- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm \times 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

- - - E N D - - -

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of nonstructural components.
 - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path
 for possible ground fault currents.
 - E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data.
 - c. Certification from the manufacturer that representative transformers have been seismically tested to International Building Code requirements. Certification shall be based upon

simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams.
 - 1) Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers.
 - 2) Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

 IBC-12.................International Building Code

 C. National Fire Protection Association (NFPA):

 70-11..................National Electrical Code (NEC)

 D. National Electrical Manufacturers Association (NEMA):

 TP1-02..................Guide for Determining Energy Efficiency for

 Distribution Transformers
- TR1-00......Transformers, Regulators, and Reactors
 E. Underwriters Laboratories, Inc. (UL):
- UL 506-08......Standard for Specialty Transformers

 UL 1561-11.....Dry-Type General Purpose and Power Transformers
- F. United States Department of Energy

10 CFR Part 431..... Energy Efficiency Program for Certain

Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 TRANSFORMERS

- A. Unless otherwise specified, transformers shall be in accordance with NEMA, NEC, UL and as shown on the drawings.
- B. Transformers shall have the following features:
 - 1. Self-cooled by natural convection, isolating windings, indoor and outdoor dry-type. Autotransformers will not be accepted, except as specifically allowed for buck-boost applications.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 4. Copper windings.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F).
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F).
 - 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.
 - 7. Certified sound levels, determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 - 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

- 8. If not shown on drawings, nominal impedance shall be as permitted by NEMA.
- 9. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.

11. Enclosures:

- a. Comprised of not less than code gauge steel.
- b. Outdoor enclosures shall be NEMA 3R.
- c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
- d. Ventilation openings shall prevent accidental access to live components.
- e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated.
- 13. Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

kVA	Output
Rating	efficiency

	(%)
15	97
30	97.5
45	97.7
75	98
112.5	98.2
150	98.3
225	98.5
300	98.6
500	98.7
750	98.8

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Anchor transformers with rustproof bolts, nuts, and washers, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, transformers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
 - D. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches).
 - F. Install transformers on vibration pads designed to suppress transformer noise and vibrations.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations.

 In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.

- c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
- d. Perform specific inspections and mechanical tests as recommended by manufacturer.
- e. Verify correct equipment grounding.
- f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA):
 - 70-11......National Electrical Code (NEC)
 - 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 - WD 1-10......General Color Requirements for Wiring Devices
 - WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-11.....Surface Metal Raceways and Fittings
 - 20-10......General-Use Snap Switches
 - 231-07.....Power Outlets
 - 467-07.....Grounding and Bonding Equipment
 - 498-07.....Attachment Plugs and Receptacles
 - 943-11.....Ground-Fault Circuit-Interrupters
 - 1449-07.....Surge Protective Devices
 - 1472-96......Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - 1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.

- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing.
 - 5. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the hospital grade listing and as follows.
 - a. Bodies shall be ivory nylon.
- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

- E. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 Volts and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be smooth nylon.

 Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
 - C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
 - D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
 - E. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
- 2) Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
- 3) Elementary schematic diagrams shall be provided for clarity of operation.
- 4) Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- C. International Code Council (ICC):
 IBC-12.....International Building Code
 D. National Electrical Manufacturers Association (NEMA):
 - ICS 1-08......Industrial Control and Systems: General Requirements

VA HVAC & ELEC DESIGN

	ICS 1.1-09Safety	y Guidelines for the Application,
	Insta	llation and Maintenance of Solid State
	Contro	ol
	ICS 2-05Indus	trial Control and Systems Controllers,
	Contac	ctors, and Overload Relays Rated 600 Volts
	ICS 4-05Indus	trial Control and Systems: Terminal Blocks
	ICS 6-06Indus	trial Control and Systems: Enclosures
	ICS 7-06Indus	trial Control and Systems: Adjustable-
	Speed	Drives
	ICS 7.1-06Safety	y Standards for Construction and Guide for
	Selec	tion, Installation, and Operation of
	Adjus	table-Speed Drive Systems
	MG 1 Part 31Inver	ter Fed Polyphase Motor Standards
Ε.	National Fire Protection Associated	ciation (NFPA):
	70-11Nation	nal Electrical Code (NEC)
F.	Underwriters Laboratories Inc	. (UL):
	508A-07Indus	trial Control Panels
	508C-07power	Conversion Equipment
	UL 1449-06Surge	Protective Devices
		SPEC WRITER NOTE: Delete between // // if not applicable to project. Also delete any other item or paragraph not applicable to the section and renumber the paragraphs.

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with //circuit breaker// //fused switch// //motor circuit protector// disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- //1. Circuit Breakers:

- a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
- b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
- c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.//

//2. Fused Switches:

- a. Quick-make, quick-break type.
- b. Minimum duty rating shall be NEMA classification General Duty (GD) for 240 Volts and NEMA classification Heavy Duty (HD) for 480 Volts.
- c. Horsepower rated, and shall have the following features:
 - 1) Copper blades, visible in the OFF position.
 - 2) An arc chute for each pole.
 - 3) Fuse holders for the sizes and types of fuses specified or as shown on the drawings.//

//3. Motor Circuit Protectors:

- a. Magnetic trip only.
- b. Bolt-on type with a minimum interrupting rating as indicated on the drawings.
- c. Equipped with automatic, adjustable magnetic trip. Magnetic trip shall be adjustable up to 1300% of the motor full load amperes.//

D. Enclosures:

- 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
- 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
- 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.

- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.

F. Overload relays:

- //Thermal// //Induction//Temperature Probe Thermal Relay //Electronic// type. Devices shall be NEMA type.
- 2. One for each pole.
- 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
- 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
- //5. Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.//
- //6. Induction overload relays shall have changeable heater elements,
 manual reset, ambient temperature compensation, sensitivity to
 single-phasing, and shall have selectable trip classes of 10, 20 and
 30.//
- //7. Temperature probe relays shall be connected to thermistors or resistance temperature detectors (RTD) embedded in the motor winding.//
- //8. Electronic overload relays shall utilize internal current
 transformers and electro-mechanical components. The relays shall
 have ambient temperature compensation, single-phase protection,
 manual or automatic reset, and trip classes of 10, 15, 20 and 30.
 The relay shall provide fault cause indication, including jam/stall,
 ground fault, phase loss, and overload.//
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.

- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - 2. Units shall include thermal overload relays, on-off operator,
 //red// //green// pilot light, //normally open// //normally closed//
 auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and

VA HVAC & ELEC DESIGN

opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 REDUCED VOLTAGE MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above.
- B. Shall have closed circuit transition.
- C. Shall limit inrush currents to not more than 70 percent of the locked rotor current.
- D. Provide phase loss protection for each motor controller, with contacts to de-energize the motor controller upon loss of any phase.

2.6 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: // //feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum $+90^{\circ}F$ Minimum $-10^{\circ}F$
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: //Air conditioned space// // //

- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - 3. Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- //8. Provide automatic shutdown upon receiving a power transfer warning
 signal from an automatic transfer switch. VSMC shall automatically
 restart motor after the power transfer.//
 - 9. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.

- //10. Power-Interruption Protection: To prevent motor from re-energizing
 after a power interruption until motor has stopped, unless
 "Bidirectional Autospeed Search" feature is available and engaged.//
 - 11. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other

- specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. In seismic areas, motor controllers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
 - D. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
 - E. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
 - F. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six

times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COTR before increasing settings.

G. Set the taps on reduced-voltage autotransformer controllers at 80 percent of line voltage.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COTR.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Requirements for seismic restraint of non-structural components.
 - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground faults.
 - E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
 - F. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

c. Certification from the manufacturer that representative enclosed switches and circuit breakers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.

2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

70-11......National Electrical Code (NEC)

VA HVAC & ELEC DESIGN

E. Underwriters Laboratories, Inc. (UL):

98-07	Enclosed and Dead-Front Switches
248-00	Low Voltage Fuses
489-09	Molded Case Circuit Breakers and Circuit
	Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK5, time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

---END---